Beam Synchronous Processing: Fixed Clock and RF Regeneration. New Paradigms for CERN SPS LLRF

LLRF 2017

P. Baudrenghien (CERN) J. Galindo (CERN, UPC) J.M. Moreno (UPC)

IVERSITAT POLITÈCNICA

09/11/2017

DISTRIBUTED ARCHITECTURE

		Clock extracted from RF	Dedicated clock distribution
CONTEXT	CLOCK INTERRUPTION BETWEEN CYCLES	Periodic resynchronizations require RF interruptions, which induces clock interruption in electronics	Dedicated clock can independently handle RF generation and DSP processing
MOTIVAT. BACKGROUND OBJECTIVE SOLUTIONS WRAP UP	SPECTRAL PURITY OF THE CLOCK	Beam Phase Loop continuously modulates RF on top of sweep Cleaning PLL architectures at specific frequencies Spectral purity of reconstructed clock not optimal Beam parameters relying on the RF noise	Dedicated cleaning architecture for clock Optimal spectral purity Optimal beam parameters
YOUR TIME	RF GYMNASTICS	 Manipulations of the RF parameters. Slip stacking merging bunches in the phase space will not be possible. Fast or abrupt modifications of the phase or frequency of the RF complicated as it affects the ADC-DAC-FPGA clocking 	Dedicated clock for DDS enables Digital RF regeneration Instantaneous modifications of RF phase and frequency driven by data, not by clocks Any type of RF gymnastics

Beam Synchronous Processing: Fixed Clock and RF Regeneration. New Paradigms for CERN SPS LLRF

LLRF 2017

FIXED CLOCK

		Swept Clock	Fixed Clock
-CONTEXT	STABILITY OF THE FEEDBACK LOOPS	Variable sampling clock → Variable loop delay Compromise in Regulation Bandwidth and Feedback Stability	Fixed sampling clock → Fixed loop delay Optimal Regulation Bandwidth and Feedback Stability
MOTIVAT.	PHASE JUMPS	RF as harmonic of clock → multiplexing required to cover wide RF range Phase Jumps when multiplexing	Simple DDS implementation can cover a wider range without interruption
-BACKGROUND -OBJECTIVE -SOLUTIONS	ADC AND DAC	Complex analogue reconstruction filter Coherent signals fall in swept range Non optimal integrated noise	Fixed analogue reconstruction filters Coherent signals at fixed digital frequencies Optimized integrated noise
-WRAP UP -YOUR TIME	UP AND DOWN MIXING	Lower spectral purity of clock → DDS and IQ sensitive to jitter → Problem for heterodyne architectures	Non IQ sampling and Direct down conversion easier
	TECHNOLOGY LIMITATIONS	PLLs tracking and locking Max dF/dt for DCM in FPGAs Clock domain synchronization Complex PAR constraints Serial interfaces FIFOs	PLLs and DCM readily usable Easy place and route Ease clock domain synchronization Ease use of serial interfaces and modern technologies
		LLRF 2017	E CEPNI

Beam Synchronous Processing: Fixed Clock and RF Regeneration. New Paradigms for CERN SPS LLRF

5

CERN

WHAT IS BEAM LOADING?

-CONTEXT -MOTIVATION

> ВАСК GROUND

-OBJECTIVE -SOLUTIONS -WRAP UP -YOUR TIME...

Interaction between beam and accelerating cavity Beam induces an EM field perturbing desired cavity one Effective accelerating voltage; vector sum of RF generator voltage and the beam-self-induced voltage

Stationary; f_{RF} Transient; $f_{RF} + nf_{rev}$

Single line at RF frequency;

Bunch spacing multiple of the RF period, assuming that the bunch frequency is much larger than bandwidth of cavity

VERSITAT POLITÈCNICA 09/11/2017

AND THE ONE TURN FEEDBACK?

OTFB algorithm is a <u>very old</u> innovation at CERN, SPS Implementation

UNIVERSITAT POL DE CATALUNYA BARCELONATECH

UNIVERSITAT POLITÈCNICA DE CATALUNYA 09/11/2017

Beam Synchronous Processing: Fixed Clock and RF Regeneration. New Paradigms for CERN SPS LLRF

RCELONATECH

UNIVERSITAT POLITECNICA 09/11/2017 RCELONATECH

DE CATALUNYA

CHRISTMAS PRESENT FOR THIS YEAR...

-CONTEXT -MOTIVATION -BACKGROUND

OBJECTIVE

-SOLUTIONS -WRAP UP -YOUR TIME... MAY WE HAVE A **PROBLEM** WITH <u>FIXED</u> CLOCKS FOR BEAM SYNCHRONOUS PROCESSING? OTFB (Requires Homothetic Transformation

MAYBE A NEW FEEDBACK (COMB) FILTERING ARCHITECTURE???

NEW FIX CLOCK ARCHITECTURE FOR ONE TURN FEEDBACK ALGORITHM

SPECIFICATION OF THE FILTER

AIM: REVOLUTION FREQUENCY HARMONICS & SYNCHROTRON SIDE BANDS

09/11/2017

Beam Synchronous Processing: Fixed Clock and RF Regeneration. New Paradigms for CERN SPS LLRF

11

SOLUTION SPACE EXPLORATION... **RECONFIGURABLE MULTI-HARMONIC FILTER, BANK OF FILTERS...**

B Field ramp; $\frac{dRF}{dt} \approx 2 MHz/s$ Regulation BW $\approx 3 MHz \rightarrow \text{worst k} \cdot f_{rev}$ at k = 70

$$\begin{pmatrix} k=1 \rightarrow \frac{df_{rev}}{dt} \approx 430 \ Hz/s \\ k=70 \rightarrow \frac{df_{rev}}{dt} \approx 30 \ KHz/s \end{pmatrix}$$

Filter BW = 200 Hz

Update when f_{rev} varies 10% of filter BW (20Hz)

Worst Update rate of 0.6 mS – 1.5Kupdates/s

-CONTEXT

-OBJECTIVE

-WRAP UP

SOLUTION SPACE EXPLORATION...

SOLUTIONS

-WRAP UP -YOUR TIME...

REDUCTION OF STABILITY MARGINS

INIVERSITAT POLITÈCNICA 09/11/2017

SOLUTION SPACE EXPLORATION...

VARIABLE IIR BASED IN FRACTIONAL DELAY REGISTERS

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

09/11/2017

LLRF 2017 Beam Synchronous Processing: Fixed Clock and RF Regeneration. New Paradigms for CERN SPS LLRF

14

SOLUTION SPACE EXPLORATION...

INSTEAD OF MOVING THE FILTER (DPS) TOWARDS DATA... "BRING DATA TOWARDS FILTERS"

-CONTEXT -MOTIVATION -BACKGROUND -OBJECTIVE

SOLUTIONS

-WRAP UP -YOUR TIME...

<u>A DYNAMIC SPECTRUM "HOMOTHER"; RESAMPLER</u>

Current work;

STATIC RATIO RESAMPLERS FIXED (always same ratio) OR VARIABLE (several ratios); Audio, Radar, Modems

Following Images taken from: "Multirate Signal Processing for Communication Systems", Fred Harris

LLRF 2017 Beam Synchronous Processing: Fixed Clock and RF Regeneration. New Paradigms for CERN SPS LLRF

15

UPSAMPLER IMPLEMENTATION VARIABLE FRACTIONAL DELAY & CONTROL LOGIC TO COMPUTE DELAY

-CONTEXT -MOTIVATION -BACKGROUND -OBJECTIVE

SOLUTIONS

-WRAP UP -YOUR TIME...

FARROW ARCHITECTURE

- Polyphase decomposition of reconstruction shifted filter (static)
- Coefficients approximated by polynomials
- Reshuffle polynomials and filter architecture to obtain a Taylor series representation of the desired output

DE CATALUNYA 09/11/2017

WRAP UP

- MOVE FROM CLASSICAL RF DISTRIBUTION TO LOCAL REGENERATION
- MOVE FROM RF DERIVED CLOCK TO FIXED REGENERATED CLOCK
- TEST SUITABILITY OF THIS APPROACH FOR BEAM SYNCHRONOUS
 PROCESSING
- -YOUR TIME...

WRAP UP

-CONTEXT

-MOTIVATION

-BACKGROUND

-OBJECTIVE

-SOLUTIONS

- IMPLEMENTATION OF THE OTFB ALGORITHM BASED ON FIXED CLOCK
 - AD-HOC IMPLEMENTATION WITH BIQUAD AND FRACTIONAL DELAY
 - GENERIC IMPLEMENTATION WITH A RESAMPLER FOR HOMOTHETIC TRANSFORMATION USED IN BEAM SYNCHRONOUS PROCESSING

THANK YOU Your Time...

BACK UP SLIDES

UNIVERSITAT POLITÈCNICA DE CATALUNYA 09/11/2017 BARCELONATECH LLRF 2017 Beam Synchronous Processing: Fixed Clock and RF Regeneration. New Paradigms for CERN SPS LLRF

CERN

RESAMPLER

COMPUTATION OF NEW SAMPLES;

- **INTERPOLATION BETWEEN AVAILABLE SAMPLES**
- VARIABLE FRACTIONAL DELAY OF AVAILABLES

UP-SAMPLER AS EXAMPLE

Zero value sample insertion and filtering to recover information

CLASSIC APPROACH, NO CIC OR OTHER

Apply delay by shifting impulse response, windowing

-CONTEXT

-MOTIVATION

-BACKGROUND

SOLUTIONS

-WRAP UP

-YOUR TIME...

-OBJECTIVE

LLRF 2017 Beam Synchronous Processing: Fixed Clock and RF Regeneration. New Paradigms for CERN SPS LLRF 20

-CONTEXT -MOTIVATION -BACKGROUND -OBJECTIVE

SOLUTIONS

-WRAP UP -YOUR TIME...

FARROW ARCHITECTURE

POLYPHASE DECOMPOSITION OF DELAY FILTER

Each branch provides a delayed sample by 1/P of the input sample interval

Equivalent to decompose the impulse response of the filter in segments mapped to the coefficient columns of the subfilters

Original 250 tap filter split in 50 branches of 5 taps

OLITÉCNICA 09/11/2017

Beam Synchronous Processing: Fixed Clock and RF Regeneration. New Paradigms for CERN SPS LLRF

LLRF 2017

UPSAMPLER IMPLEMENTATION

APROXIMATE THE SEGMENTS WITH A LOW ORDER POLYNOMIAL

-MOTIVATION -BACKGROUND -OBJECTIVE

-CONTEXT

SOLUTIONS

-WRAP UP -YOUR TIME...

With some further maths, it is possible to reorganize polynomials and the filter... We obtain a Taylor series representation of the desired output with the input and delay as only parameters

- No need to store coefficient storage, only polynomials
- Evaluation of the polynomials at desired delay value gives coefficient, implicit interpolation of coefficient

$$y(n + \Delta) = c_0(x) + c_1(x) \cdot \Delta + c_2(x) \cdot \Delta^2 + c_3(x) \cdot \Delta^3 + c_4(x) \cdot \Delta^4$$

IIVERSITAT POLITÈCNICA CATALUNYA 09/11/2017 RCELONATECH

Beam Synchronous Processing: Fixed Clock and RF Regeneration. New Paradigms for CERN SPS LLRF

LLRF 2017

UPSAMPLER IMPLEMENTATION

-CONTEXT -MOTIVATION -BACKGROUND -OBJECTIVE

SOLUTIONS

-WRAP UP -YOUR TIME...

FINALLY, USE HORNER RULE TO EFFICIENTLY IMPLEMENT IT

$$y(\Delta) = c_0 + c_1 \Delta + c_2 \Delta^2 + c_3 \Delta^3 + c_4 \Delta^4$$
$$= c_0 + \Delta \cdot (c_1 + \Delta \cdot (c_2 + \Delta \cdot (c_3 + \Delta \cdot c_4)))$$

Farrow architecture

UNIVERSITAT POLITÈCNICA DE CATALUNYA 09/11/2017

UPSAMPLER IMPLEMENTATION VARIABLE FRACTIONAL DELAY & CONTROL LOGIC TO COMPUTE DELAY

-CONTEXT -MOTIVATION -BACKGROUND -OBJECTIVE

SOLUTIONS

-WRAP UP -YOUR TIME...

FARROW ARCHITECTURE

- Polyphase decomposition of reconstruction shifted filter (static)
- Coefficients approximated by polynomials
- Reshuffle polynomials and filter architecture to obtain a Taylor series representation of the desired output

PARAMETERS; input and delay

PHASE ACCUMULATORS

- Delay is the difference between two counters, phase accumulators
- One running at input sampling rate
- Second running at output sampling rate
- Real time computation of the delay for arbitrary sampling rate conversion

